AH Chemistry – Unit 1

Shapes of Molecules and Polyatomic lons

This topic explores further aspects of *Covalent Bonding*, leading to an understanding of the *Shapes* of molecules & polyatomic ions

Covalent Bonding

A Covalent Bond will form

when atoms can rearrange their electrons (by *sharing*) to produce an arrangement of *lower energy*.

Ionic Bonding

An *Ionic Bond* will form when atoms can rearrange their electrons (*transfer*) to produce an arrangement of *lower energy*.

Despite the advantage gained by achieving a *'stable octet'*, the real driving force behind ionic bonding is the stability of the *Ionic Lattice* formed.

Electronegativity 1

Ionic and Covalent are, in fact, rather arbitrary labels and it is no longer enough to simply look to see if a metal element is involved or not.

Electronegativity values are a useful guide but properties will still need to be studied to provide confirmation.

Electronegativity 2

Electronegativity 3

Bonding Diagrams

TABLE 8.1 Electron-Dot Symbols

Ele- ment	Electron Configu- ration	Electron- Dot Symbol	
Li	[He]2s ¹	Li •	
Be	[He]2 <i>s</i> ²	•Be•	
В	$[\text{He}]2s^22p^1$	•B•	
С	$[\text{He}]2s^22p^2$	•.C.•	
Ν	$[\text{He}]2s^22p^3$	•N *	
0	$[He]2s^{2}2p^{4}$	ःः	
F	$[\text{He}]2s^22p^5$	F	
Ne	$[He]2s^{2}2p^{6}$	Ne	

Various methods (*models*) can be used to explain the properties associated with covalent bonding.

One useful model positions electrons (both bonding and nonbonding) around atoms at 'four corners'. These are sometimes called *Lewis Diagrams*

Bonding Structures

In Ammonia the central nitrogen atom has 4 electron pairs, the *stable* octet

- $H \longrightarrow N \longrightarrow H$ There are 3 'bonding pairs' and 1 'non-|bonding pair' often referred to as a 'lone<math>Hpair'
- H H N H H

H N H

Η

Sometimes atoms will use a lone pair as a bonding pair to form a *Dative* or *Coordinate* Covalent bond, as in the Ammonium ion, NH_4^+

CCl₄ Carbon Tetrachloride

H₂O Water Hydrogen Oxide

Unusual Bonding

F Be F Cl BCl Cl In both these molecules, the Be and B atoms do not achieve a **'stable octet'**. The resulting molecules are, predictably, very reactive (unstable).

In both these molecules, the P and S atoms have in excess of a 'stable octet'.

The extra orbitals needed, to cope with more than 8 electrons, come from the empty *d-orbital* set.

This 'mixing' of orbitals is called *hybridisation*

Shapes of Molecules

In order to predict molecular shape, we consider that *all* outer shell electrons (*valence electrons*) of the central atom repel each other. Therefore, the molecule adopts whichever 3D geometry *minimizes this repulsion*.

Both **bonding** and **non-bonding** electron pairs must be considered.

We call this process the *Valence Shell Electron Pair Repulsion* (*VSEPR*) theory.

Electron Pair Geometry 1

ELECTRON-PAIR GEOMETRIES AS A FUNCTION OF THE NUMBER OF ELECTRON PAIRS

Electron Pair Geometry 2

ELECTRON-PAIR GEOMETRIES AS A FUNCTION OF THE NUMBER OF ELECTRON PAIRS

Counting Electron Pairs

It is important not to confuse the *number of atoms* with the *number of electron pairs*.

For example, CF_4 and XeF_4 may, at first sight, appear likely to be the same shape.

Electron pairs = electrons of central atom + no. of atoms attached divided by 2 CF_{4} +2 4 electron pairs XeF₄ 8 +2 6 electron pairs

Number of Electron Pairs	Electron- Pair Geometry	Bonding Pairs	Nonbonding Pairs	Molecular Geometry	Example
6 pairs		6	0		SF ₆
	Octahedral			Octahedral	
		5	1	B B B	BrF ₅
		4	2	Square pyramidal B	XeF ₄
				Square planar	

Repulsive Forces 1

Bonding electrons, because they are attracted by two nuclei, do not repel as much as non-bonding electrons.

This can cause 'distortions' in the shapes of molecules:

Repulsive Forces 2

Electron pair repulsions decrease in strength in the order:

non-bonding/non-bonding

non-bonding/bonding

bonding/bonding

Repulsive Forces 3

Placing the non-bonding lone pairs at the Axial positions would appear to give least repulsion but they would only be 90° away from the 3 bonding pairs.

To minimize $e^{\Box} = e^{\Box}$ repulsion, lone pairs are always placed in equatorial positions, so ...

